Sponsored Links
-->

Tuesday, January 2, 2018

Representation and Reasoning Interaction | Proceedings of the ...
src: rspa.royalsocietypublishing.org

The mutilated chessboard problem is a tiling puzzle proposed by philosopher Max Black in his book Critical Thinking (1946). It was later discussed by Solomon W. Golomb (1954), Gamow & Stern (1958) and by Martin Gardner in his Scientific American column "Mathematical Games". The problem is as follows:

Suppose a standard 8×8 chessboard has two diagonally opposite corners removed, leaving 62 squares. Is it possible to place 31 dominoes of size 2×1 so as to cover all of these squares?

Most considerations of this problem in literature provide solutions "in the conceptual sense" without proofs. John McCarthy proposed it as a hard problem for automated proof systems. In fact, its solution using the resolution system of inference is exponentially hard.


Video Mutilated chessboard problem



Solution

The puzzle is impossible to complete. A domino placed on the chessboard will always cover one white square and one black square. Therefore, a collection of dominoes placed on the board will cover an equal numbers of squares of each color. If the two white corners are removed from the board then 30 white squares and 32 black squares remain to be covered by dominoes, so this is impossible. If the two black corners are removed instead, then 32 white squares and 30 black squares remain, so it is again impossible.


Maps Mutilated chessboard problem



Gomory's theorem

The same impossibility proof shows that no domino tiling exists whenever any two white squares are removed from the chessboard. However, if two squares of opposite colors are removed, then it is always possible to tile the remaining board with dominoes; this result is called Gomory's theorem, and is named after mathematician Ralph E. Gomory, whose proof was published in 1973. Gomory's theorem can be proven using a Hamiltonian cycle of the grid graph formed by the chessboard squares; the removal of two oppositely colored squares splits this cycle into two paths with an even number of squares each, both of which are easy to partition into dominoes.


Pebbling a chessboard - Cool Math Puzzle - YouTube
src: i.ytimg.com


See also

  • Tiling a rectangle with tetrominoes

Introduction to Problem Solving - ppt video online download
src: slideplayer.com


Notes


How many squares are on a chess board? - YouTube
src: i.ytimg.com


References

  • Gamow, George; Stern, Marvin (1958), Puzzle-Math, Viking Press, ISBN 978-0-333-08637-7 
  • Gardner, Martin (1994), My Best Mathematical and Logic Puzzles, Dover, ISBN 0-486-28152-3 

Computer chess - Wikipedia
src: upload.wikimedia.org


External links

  • Dominoes on a Checker Board by Jim Loy
  • Dominoes on a Checker Board
  • Gomory's Theorem by Jay Warendorff, The Wolfram Demonstrations Project.

Source of article : Wikipedia